Tokenomics and Platform Finance

Lin William Cong
Cornell Johnson Finance

Ye Li
Ohio State University Finance

Neng Wang
Columbia GSB & NBER

Macro Finance Society
Digital Platforms and Tokens

- The rise of digital platforms
 - Payment innovation is important, e.g., escrow account on eBay and Alibaba

- Tokens: users’ means of payments on platform
 - Blockchain: preventing double spending, facilitating smart contracts

- Tokens: platforms’ financing instruments
 - Token offerings $ 21 billion in 2018; US VC $ 131 billion
 - Tokens used to gather resources (e.g., engineers, consultants, investors)
 - Tokens enter into circulation gradually (protocol and vesting)

- Tokens: rewards for the founding entrepreneurs
Digital Platforms and Tokens

- The rise of digital platforms
 - Payment innovation is important, e.g., escrow account on eBay and Alibaba

- Tokens: users’ means of payments on platform
 - Blockchain: preventing double spending, facilitating smart contracts

- Tokens: platforms’ financing instruments
 - Token offerings $21 billion in 2018; US VC $131 billion
 - Tokens used to gather resources (e.g., engineers, consultants, investors)
 - Tokens enter into circulation gradually (protocol and vesting)

- Tokens: rewards for the founding entrepreneurs
Digital Platforms and Tokens

- The rise of digital platforms
 - Payment innovation is important, e.g., escrow account on eBay and Alibaba

- Tokens: users’ means of payments on platform
 - Blockchain: preventing double spending, facilitating smart contracts

- Tokens: platforms’ financing instruments
 - Token offerings $ 21 billion in 2018; US VC $ 131 billion
 - Tokens used to gather resources (e.g., engineers, consultants, investors)
 - Tokens enter into circulation gradually (protocol and vesting)

- Tokens: rewards for the founding entrepreneurs
Digital Platforms and Tokens

- The rise of digital platforms
 - Payment innovation is important, e.g., escrow account on eBay and Alibaba

- Tokens: users’ means of payments on platform
 - Blockchain: preventing double spending, facilitating smart contracts

- Tokens: platforms' financing instruments
 - Token offerings $ 21 billion in 2018; US VC $ 131 billion
 - Tokens used to gather resources (e.g., engineers, consultants, investors)
 - Tokens enter into circulation gradually (protocol and vesting)

- Tokens: rewards for the founding entrepreneurs
Digital Platforms and Tokens

- The rise of digital platforms
 - Payment innovation is important, e.g., escrow account on eBay and Alibaba

- Tokens: users’ means of payments on platform
 - Blockchain: preventing double spending, facilitating smart contracts

- Tokens: platforms' financing instruments
 - Token offerings $ 21 billion in 2018; US VC $ 131 billion
 - Tokens used to gather resources (e.g., engineers, consultants, investors)
 - Tokens enter into circulation gradually (protocol and vesting)

- Tokens: rewards for the founding entrepreneurs
Digital Platforms and Tokens

- The rise of digital platforms
 - Payment innovation is important, e.g., escrow account on eBay and Alibaba

- Tokens: users’ means of payments on platform
 - Blockchain: preventing double spending, facilitating smart contracts

- Tokens: platforms' financing instruments
 - Token offerings $ 21 billion in 2018; US VC $ 131 billion
 - Tokens used to gather resources (e.g., engineers, consultants, investors)
 - Tokens enter into circulation gradually (protocol and vesting)

- Tokens: rewards for the founding entrepreneurs
Outline

- Introduction
- Model and Solution
 - Franchise Value as Discipline – Durable-Goods Monopoly
 - Token Overhang – Corporate Finance
 - The Value of Commitment – Time Inconsistency
- Conclusion
A platform supports a unique set of transactions

User i settles transactions in tokens, deriving *convenience yield* from token value

- Efficient payment, smart contracting...
A platform supports a unique set of transactions

- Productivity: A_t

User i settles transactions in tokens, deriving convenience yield from token value $x_{i,t} = P_t k_{i,t}$

- Convenience yield: $x_{i,t}^{1-\alpha} (N_t^\gamma A_t u_i)^\alpha dt$
 - Token price: P_t
 - Token units: $k_{i,t}$
 - Number of users: N_t
 - User heterogeneity: $u_i \sim G_t(u)$
A **platform** supports a unique set of transactions

- Productivity: A_t

User i settles transactions in tokens, deriving *convenience yield* from token value $x_{i,t} = P_t k_{i,t}$

• Convenience yield: $x_{i,t}^{1-\alpha} (N_t^\gamma A_t u_i)^\alpha dt$
 - Token price: P_t
 - Token units: $k_{i,t}$
 - Number of users: N_t
 - User heterogeneity: $u_i \sim G_t(u)$

• Token price appreciation $k_{i,t} E_t[dp_t]$

Token price dynamics in equilibrium

\[
\frac{dp_t}{P_t} = \mu_t^p dt + \sigma_t^p dZ_t
\]
A platform supports a unique set of transactions

- Productivity: \(A_t \)

User \(i \) settles transactions in tokens, deriving convenience yield from token value \(x_{i,t} = P_t k_{i,t} \)

- Convenience yield: \(x_{i,t}^{1-\alpha} \left(N_t^\gamma A_t u_i \right)^\alpha dt \)
 - Token price: \(P_t \)
 - Token units: \(k_{i,t} \)
 - Number of users: \(N_t \)
 - User heterogeneity: \(u_i \sim G_t(u) \)
- Token price appreciation \(k_{i,t} E_t [dP_t] \)
- Participation cost \(\phi dt, \text{ if } k_{i,t} > 0 \)

\[
N_t = 1 - G_t(u_t)
\]
Objective

\[\int_{t=0}^{+\infty} e^{-rt} \left[\max\{0, \text{convenience} + \text{net token return} - \text{participation cost} \} \right] dt \]
Token Demand

\[k_{i,t} = \frac{F(E_t[dP_t], A_t)}{P_t} u_i \]

\[\frac{\partial F}{\partial E_t[dP_t]} > 0 \]

\[\frac{\partial F}{\partial A_t} > 0 \]
Token Market Clearing

\[M_t = \int_{u=u_t} \frac{F \left(E_t[dP_t], A_t \right)}{P_t} u dG_t(u) \]
Token Market Clearing

\[M_t = \frac{F(E_t[dP_t], A_t)}{P_t} \int_{u=u_t}^{u} udG_t(u) \]

- \(P_t \) decreases in supply \(M_t \), increases in \(A_t \)
- 1st, 2nd order derivatives in \(E_t[dP_t] \) by Itô's lemma
 \(\Rightarrow \) Differential equation for \(P_t = P(M_t, A_t) \)
A platform supports a unique set of transactions

- Productivity: A_t

User i settles transactions in tokens, deriving *convenience yield* from token value $x_{i,t} = P_t k_{i,t}$

- Convenience yield: $x_{i,t}^{1-\alpha} (N_t^\gamma A_t u_i)^\alpha dt$
 - Token price: P_t
 - Token units: $k_{i,t}$
 - Number of users: N_t
 - User heterogeneity: $u_i \sim G_t(u)$
- Participation cost ϕdt, if $k_{i,t} > 0$
- Token price appreciation $E_t[dP_t]$

Token Market Clearing

$$M_t = \frac{F(E_t[dP_t], A_t)}{P_t} \int_{u=u_t} udG_t(u)$$

- P_t decreases in supply M_t, increases in A_t
A platform supports a unique set of transactions

- Productivity: A_t

User i settles transactions in tokens, deriving convenience yield from token value $x_{i,t} = P_t k_{i,t}$

- Convenience yield: $x_{i,t}^{1-\alpha} (N_t^\gamma A_t u_i)^\alpha dt$
 - Token price: P_t
 - Token units: $k_{i,t}$
 - Number of users: N_t
 - User heterogeneity: $u_i \sim G_t(u)$
- Participation cost ϕdt, if $k_{i,t} > 0$
- Token price appreciation $E_t[dP_t]$

How do the state variables A_t and M_t evolve?

Token Market Clearing

$$M_t = \frac{F(E_t[dP_t], A_t)}{P_t} \int_{u=u_t} udG_t(u)$$

- P_t decreases in supply M_t, increases in A_t
A platform supports a unique set of transactions

- Productivity: \(\frac{dA_t}{A_t} = L_t dH_t \)
A platform supports a unique set of transactions

- Productivity: \(\frac{dA_t}{A_t} = L_t dH_t \)
- **Contributor** resource: *endogenous* \(L_t \)
A platform supports a unique set of transactions

- **Productivity:** \(\frac{dA_t}{A_t} = L_t dH_t \)
- **Contributor** resource: *endogenous* \(L_t \)
- **Entrepreneur** contribution: \(dH_t = \mu^H dt + \sigma^H dZ_t \)
A platform supports a unique set of transactions

- Productivity: \[\frac{dA_t}{A_t} = L_t (\mu^H dt + \sigma^H dZ_t) \]
- Platform investment: endogenous \(L_t \)
A platform supports a unique set of transactions

- Productivity:
 \[\frac{dA_t}{A_t} = L_t(\mu^H dt + \sigma^H dZ_t) \]

- Platform investment:
 \[\text{endogenous } L_t \]

Tokens paid

\[\frac{F(L_t, A_t)dt}{P_t} \]

Token Supply

\[dM_t = \frac{F(L_t, A_t)dt}{P_t} \]
A platform supports a unique set of transactions

- Productivity: \[\frac{dA_t}{A_t} = L_t(\mu^H dt + \sigma^H dZ_t) \]
- Platform investment: endogenous \(L_t \)
- Tokens paid to owner (cumulative): \(D_t \)

\[
\text{Token Supply} \quad dM_t = \frac{F(L_t, A_t)dt}{P_t}
\]
A platform supports a unique set of transactions

- Productivity:
 \[
 \frac{dA_t}{A_t} = L_t (\mu^H dt + \sigma^H dZ_t)
 \]
- Platform investment: endogenous \(L_t \)
- Tokens paid to owner: \(dD_t > 0 \)
- Tokens burnt by owner: \(dD_t < 0 \)

Token Supply

\[
dM_t = \frac{F(L_t, A_t) dt}{P_t} + dD_t
\]
A **platform** supports a unique set of transactions

- **Productivity:**
 \[\frac{dA_t}{A_t} = L_t (\mu^H dt + \sigma^H dZ_t) \]

- **Platform investment:** *endogenous* \(L_t \)

- **Tokens paid to owner:**
 \[dD_t > 0 \]

- **Tokens burnt by owner:**
 \[dD_t < 0 \]

Token Supply

\[dM_t = \frac{F(L_t, A_t)dt}{P_t} + dD_t \]
\[
max_{\{L_t, dD_t\}} \int_{t=0}^{+\infty} e^{-rt} P_t dD_t [I_{\{dD_t \geq 0\}} + (1 + \chi) I_{\{dD_t < 0\}}] dt
\]

- Token buy-back financing cost: \(\chi \)
\[
\max_{\{L_t, dD_t\}} \int_{t=0}^{+\infty} e^{-rt} P_t dD_t \left[I_{\{dD_t \geq 0\}} + (1 + \chi) I_{\{dD_t < 0\}} \right] dt
\]

- \(V_t = V(M_t, A_t) \), \(\frac{\partial V}{\partial M} < 0 \), \(\frac{\partial V}{\partial A} > 0 \)
- HJB is differential equation for \(V(M_t, A_t) \)

\[
dM_t = \frac{F(L_t, A_t) dt}{P_t} + dD_t \quad \frac{dA_t}{A_t} = L_t (\mu^H dt + \sigma^H dZ_t)
\]
$$\max_{\{\mu_t,dD_t\}} \int_{t=0}^{+\infty} e^{-rt} P_t dD_t \left[I_{\{dD_t \geq 0\}} + (1 + \chi) I_{\{dD_t < 0\}} \right] dt$$

- \(V_t = V(M_t, A_t) \), \(\frac{\partial V}{\partial M} < 0 \) \(\frac{\partial V}{\partial A} > 0 \)
- \(P_t \) decreases in supply \(M_t \), increases in \(A_t \)

\[
dM_t = \frac{F(L_t, A_t) dt}{P_t} + dD_t \quad \frac{dA_t}{A_t} = L_t (\mu^H dt + \sigma^H dZ_t)
\]
A platform supports a unique set of transactions

- **Productivity:**
 \[
 \frac{dA_t}{A_t} = L_t (\mu^H dt + \sigma^H dZ_t)
 \]
- **Contributor resource:**
 \[
 \text{Payment} = \frac{L_t}{F(L_t, A_t)} dt
 \]
- **Tokens paid to owner:**
 \[dD_t > 0\]
- **Tokens burnt by owner:**
 \[dD_t < 0\]

User \(i\) settles transactions in tokens, deriving *convenience yield* from token value \(x_{i,t} = P_t k_{i,t}\)

- **Convenience yield:**
 \[
 x_{i,t}^{1-\alpha} (N_t^\gamma A_t u_i)^\alpha dt
 \]
 - **Token price:**
 \[P_t\]
 - **Token units:**
 \[k_{i,t}\]
 - **Number of users:**
 \[N_t\]
 - **User heterogeneity:**
 \[u_i \sim G(u)\]
- **Participation cost**
 \[\phi dt, \text{if } k_{i,t} > 0\]
- **Token price appreciation**
 \[E_t[dP_t]\]

Objective

\[
\int_{t=0}^{+\infty} e^{-rt} P_t dD_t \left[I_{\{dD_t \geq 0\}} + (1 + \chi) I_{\{dD_t < 0\}} \right] dt
\]

- **Value**:
 \[V_t = V(M_t, A_t), \frac{\partial V}{\partial M} < 0, \frac{\partial V}{\partial A} > 0\]

Token Supply

\[dM_t = \frac{F(L_t, A_t) dt}{P_t} + dD_t\]

Token Market Clearing

\[M_t = \frac{F(E_t[dP_t], A_t)}{P_t} \int_{u=u_t} udG_t(u)\]

- **Token price**
 \[P_t\]
 - **Decreases in supply** \(M_t\), **increases in** \(A_t\)

Token Price

\[\frac{dP_t}{P_t} = \mu^P dt + \sigma^P dZ_t\]

endogenous
Transform the State Space

State space: \((M_t, A_t) \rightarrow (m_t, A_t)\), where \(m_t = \frac{M_t}{A_t}\)
Transform the State Space

State space: \((M_t, A_t) \rightarrow (m_t, A_t)\), where \(m_t = \frac{M_t}{A_t}\)

\(V(M_t, A_t) = A_t v(m_t)\), and \(P(M_t, A_t) = P(m_t)\)

Solve ODEs of \(v(m_t)\) and \(P(m_t)\)
Transform the State Space

State space: \((M_t, A_t) \rightarrow (m_t, A_t)\), where \(m_t = \frac{M_t}{A_t}\)

\[V(M_t, A_t) = A_t \nu(m_t) \text{, and } P(M_t, A_t) = P(m_t) \]

Solve ODEs of \(\nu(m_t)\) and \(P(m_t)\)

\[\frac{\partial V}{\partial M_t} = \nu'(m_t) < 0 \quad P'(m_t) < 0 \]
Platform Owner Value Function

$v(m_t)$ vs. Token Supply / Platform Productivity m_t
Outline

- Introduction
- Model and Solution
- Franchise Value as Discipline
- Token Overhang
- The Value of Commitment
- Conclusion
Optimal Platform Payout and Buy-back (burn) dD_t
Optimal Platform Payout and Buy-back (burn) dD_t

\[\frac{m}{m_t} \]

\[dD_t < 0 \]

\[-\frac{\partial V}{\partial M_t} = -\nu'(m_t) = P_t(1 + \chi) \]
Optimal Platform Payout and Buy-back (burn) dD_t

\[
\begin{align*}
\frac{m}{m} & \quad \frac{m_t}{m} \\
\text{if } dD_t > 0 & \quad \text{if } dD_t < 0 \\
- \frac{\partial V}{\partial M_t} & = -v'(m_t) = P_t \\
- \frac{\partial V}{\partial M_t} & = -v'(m_t) = P_t (1 + \chi)
\end{align*}
\]
Optimal Platform Payout and Buy-back (burn) dD_t

\[
\begin{align*}
\frac{m}{\bar{m}} \quad & \quad \frac{m_t}{\bar{m}} \\
\text{if } dD_t > 0 \\
\text{if } dD_t < 0
\end{align*}
\]

\[
- \frac{\partial V}{\partial M_t} = -v'(m_t) = P_t
\]

\[
- \frac{\partial V}{\partial M_t} = -v'(m_t) = P_t (1 + \chi)
\]

Franchise (continuation) value \(\rightarrow\) Resistance against over-supply
Coase (1972): Producers of durable goods are always tempted to meet the residual demand until the product price falls to marginal cost.
Coase (1972): Producers of durable goods are always tempted to meet the residual demand until the product price falls to marginal cost.

- Tokens are durable - $dD_t > 0$ permanently increases M_t - and no resources are needed to produce tokens (MC = 0).
Coase (1972): • Producers of durable goods are always tempted to meet the residual demand until the product price falls to marginal cost
 ▪ Tokens are durable - $dD_t > 0$ permanently increases M_t - and no resources are needed to produce tokens ($MC = 0$)
• Consumers wait for the lowest price
Coase (1972):
- Producers of durable goods are always tempted to meet the residual demand until the product price falls to marginal cost
 - Tokens are durable - $dD_t > 0$ permanently increases M_t - and no resources are needed to produce tokens (MC = 0)
- Consumers wait for the lowest price
 - Consumers rationally form expectation of token price
Coase (1972):

- Producers of durable goods are always tempted to meet the residual demand until the product price falls to marginal cost
 - Tokens are durable - $dD_t > 0$ permanently increases M_t - and no resources are needed to produce tokens ($MC = 0$)
- Consumers wait for the lowest price
 - Consumers rationally form expectation of token price
- Producers sell all goods immediately at price equal to MC
Coase (1972):

- Producers of durable goods are always tempted to meet the residual demand until the product price falls to marginal cost
 - Tokens are durable - $dD_t > 0$ permanently increases M_t - and no resources are needed to produce tokens ($MC = 0$)
- Consumers wait for the lowest price
 - Consumers rationally form expectation of token price
- Producers sell all goods immediately at price equal to MC
 - Producers sell ∞ tokens immediately at price equal to 0?
Difference: • Token demand is not stationary – A_t grows geometrically, so future demand is stronger – users cannot expect P_t falls to 0
 ▪ Bulow (1982), Stokey (1981)
Difference: • Token demand is *not stationary* – \(A_t \) grows geometrically, so future demand is stronger – users cannot expect \(P_t \) falls to 0
 ▪ Bulow (1982), Stokey (1981)
• Real option concern: \(A_t \) grows stochastically, and increasing token supply can only be reversed costly due to \(\chi \)
Difference: • Token demand is *not stationary* – A_t grows geometrically, so future demand is stronger – users cannot expect P_t falls to 0
 ▪ Bulow (1982), Stokey (1981)

• Real option concern: A_t grows stochastically, and increasing token supply can only be reversed costly due to χ

Platform resists excess supply

$$m_t = \frac{M_t}{A_t} \in [\underline{m}, \bar{m}]$$

Incentive to buyback and burn tokens
Luxury brands including Burberry burn stock worth millions
Outline

- Introduction
- Model and Solution
- Franchise Value as Discipline
- **Token Overhang**
- The Value of Commitment
- Conclusion
Optimal Platform Investment L_t

\[
\frac{\partial V}{\partial A_t} A_t \mu^H + \frac{\partial^2 V}{\partial A_t^2} A_t^2 (\sigma^H)^2 L_t = \frac{\partial F}{\partial L_t} \left(\frac{\partial V/\partial M_t}{P_t} \right)
\]

Marginal contribution to V

Marginal cost

Marginal cost of investment:

\[
\frac{\partial F}{\partial L_t}
\]
Optimal Platform Investment L_t

$$\frac{\partial V}{\partial A_t} A_t \mu^H + \frac{\partial^2 V}{\partial A_t^2} \sigma^H A_t^2 L_t = \frac{\partial F}{\partial L_t} \left(\frac{\partial V}{\partial M_t} \right)$$

Marginal contribution to V

Marginal cost

Marginal cost of investment: $\frac{\partial F}{\partial L_t}$

Dynamic token issuance cost: $-\frac{\partial V}{\partial M_t} > 1$, at \bar{m}, $-\frac{\partial V}{\partial M_t} = P_t (1 + \chi)$

Underinvestment!
Conflict of Interest and Under-investment

Investment paid by new tokens → User convenience ↑
Conflict of Interest and Under-investment

Investment paid by new tokens → User convenience ↑ → Can platform seize all surplus via token price ↑?
Conflict of Interest and Under-investment

Investment paid by new tokens → User convenience ↑ → Can platform seize all surplus via token price ↑?
NO!

User heterogeneity + High \(u_i \) keep surplus; only the marginal user breaks even

One token price integrated market
Conflict of Interest and Under-investment

Investment paid by new tokens \(\rightarrow \) User convenience ↑

User heterogeneity +

One token price integrated market

\[m_t = \frac{M_t}{A_t} \downarrow \text{if negative shock} \]

Closer to \(\bar{m} \) costly buy-back

Can platform seize all surplus via token price ↑? \(\text{NO!} \)

High \(u_i \) keep surplus; only the marginal user breaks even

Platform pays \(\chi \) and cannot share it with users
Conflicts of Interest and Under-investment

Investment paid by new tokens → User convenience ↑ → Can platform seize all surplus via token price ↑? NO!

User heterogeneity +

One token price integrated market

Closer to m costly buy-back

Platform bears χ and cannot share it with users

$$m_t = \frac{M_t}{A_t} \downarrow \text{if negative shock}$$
Token Overhang

A: Dynamic Token Issuance Cost

$$\frac{-V_{M_t}}{P_t}$$

B: Platform Investment

$$L_t$$

Token Supply / Platform Productivity $$m_t$$
Outline

• Introduction

• Model and Solution

• Franchise Value as Discipline

• Token Overhang

• The Value of Commitment

• Conclusion
Time Inconsistency

A rule of investment set at \(t = 0 \) \(\rightarrow \) higher \(V \) in every state

\[
\frac{dM_t}{M_t} = \mu^M dt \quad \text{at} \quad m_t \in (\underline{m}, \overline{m}), \text{s.t.,} \quad \tilde{L}(m_t) > L_t
\]

Higher token value dominates the cost of more frequent token burning
Value Function: Discretion vs. Commitment

A: Platform Owner Value – Discretion

- $v(m_t)$ vs. Token Supply / Platform Productivity m_t

B: Platform Owner Value – Commitment

- $v(m_t)$ vs. Token Supply / Platform Productivity m_t
Time Inconsistency

A rule of investment set at $t = 0 \rightarrow$ higher V in every state

$$\frac{dM_t}{M_t} = \mu^M dt \text{ at } m_t \in (\underline{m}, \bar{m}) \text{, s.t., } \bar{L}(m_t) > L_t$$

Commitment via Blockchain
Conclusion: Token-Based Corporate Finance

- A model of token-based ecosystem
 - Endogenous token supply and platform development
 - Endogenous token price and user-base formation

1. Platform franchise value \rightarrow discipline on token supply ("dilution")
 - Durable-good problem, because of endogenous platform development
 - Token burning contributes to token price stability; stablecoin without collateral-backing (in the paper)

2. Token overhang
 - Ingredients: (a) integrated token market (one price), (b) user heterogeneity,
 (c) stochastic investment outcome, (d) financial friction

3. The value of commitment under token overhang
 - Blockchain enables token as means of payment and financing tools
Conclusion: Token-Based Corporate Finance

• A model of token-based ecosystem
 • Endogenous token supply and platform development
 • Endogenous token price and user-base formation

1 Platform franchise value \rightarrow discipline on token supply ("dilution")

≠ Durable-good problem, because of endogenous platform development
 • Token burning contributes to token price stability; stablecoin without collateral-backing (in the paper)

2 Token overhang

• Ingredients: (a) integrated token market (one price), (b) user heterogeneity, (c) stochastic investment outcome, (d) financial friction

3 The value of commitment under token overhang

• Blockchain enables token as means of payment and financing tools
Conclusion: Token-Based Corporate Finance

- A model of token-based ecosystem
 - Endogenous token supply and platform development
 - Endogenous token price and user-base formation

1. Platform franchise value \rightarrow discipline on token supply ("dilution")
 - Durable-good problem, because of endogenous platform development
 - Token burning contributes to token price stability; stablecoin without collateral-backing (in the paper)

2. Token overhang
 - Ingredients: (a) integrated token market (one price), (b) user heterogeneity, (c) stochastic investment outcome, (d) financial friction

3. The value of commitment under token overhang
 - Blockchain enables token as means of payment and financing tools
Conclusion: Token-Based Corporate Finance

• A model of token-based ecosystem
 • Endogenous token supply and platform development
 • Endogenous token price and user-base formation

1 Platform franchise value → discipline on token supply ("dilution")
 ≠ Durable-good problem, because of endogenous platform development
 • Token burning contributes to token price stability; stablecoin without collateral-backing (in the paper)

2 Token overhang
 • Ingredients: (a) integrated token market (one price), (b) user heterogeneity, (c) stochastic investment outcome, (d) financial friction

3 The value of commitment under token overhang
 • Blockchain enables token as means of payment and financing tools
Related Papers

- Platforms without tokens: Rochet and Tirole (2003), Stulz (2019)

- Tokens for users and contributors with exogenous supply: Sockin and Xiong (2018), Pagnotta (2018) among others

- Money: (1) convenience yield in Baumol-Tobin models, Krishnamurthy and Vising-Jørgensen (2012); (2) demand with inflation expectation in Cagan (1956); (3) financing tools in Bolton and Huang (2016)
Users and Token Demand

- Price-taking, in equilibrium $dP_t = P_t \mu_t^P dt + P_t \sigma_t^P dZ_t$

- Maximize the NPV, given r, the cost of capital

$$\mathbb{E} \left[\int_{t=0}^{\infty} e^{-rt} dy_{i,t} \right],$$

where

$$dy_{i,t} = \max \left\{ 0, \max_{k_{i,t}>0} \left[\left(P_t k_{i,t} \right)^{1-\alpha} \left(N_t^\gamma A_t u_i \right)^{\alpha} dt + \text{convenience} \right] + k_{i,t} \mathbb{E}_t \left[dP_t \right] - \phi dt - P_t k_{i,t} r dt \right\}$$

- Deadweight access cost ϕdt: cognitive, application integration etc.
Users and Token Demand

- Price-taking, in equilibrium $dP_t = Pt\mu_t^P dt + Pt\sigma_t^P dZ_A$
- Maximize the NPV, given r, the cost of capital

$$\mathbb{E} \left[\int_{t=0}^{\infty} e^{-rt} dy_{i,t} \right],$$

where

$$dy_{i,t} = \max \left\{ 0, \max_{k_{i,t}>0} \left[(Pt k_{i,t})^{1-\alpha} \left(N_t^{\gamma} A_t u_i \right)^{\alpha} dt + \text{convenience} \right] \right\}$$

$$k_{i,t} \mathbb{E}_t [dP_t] - \phi dt - P_t k_{i,t} r dt$$

- Deadweight access cost ϕdt: cognitive, application integration etc.
Users and Token Demand (con’t)

- Agent i’s optimal holding of tokens is given by

$$k_{i,t}^* = \frac{N_t^\gamma A_t u_i}{P_t} \left(\frac{1 - \alpha}{r - \mu_t^P} \right)^{\frac{1}{\alpha}}. \quad (2)$$

It has the following properties:
1. $k_{i,t} \uparrow$ in N_t, user base.
2. $k_{i,t} \downarrow$ in token price P_t.
3. $k_{i,t} \uparrow$ in A_t, platform usefulness, and agent-specific u_i.
4. $k_{i,t} \uparrow$ in the expected token price change, μ_t^P.

- Determine N_t: if profits > 0, agents participate

- Adoption: maximized profit $N_t^\gamma A_t u_i \alpha \left(\frac{1 - \alpha}{r - \mu_t^P} \right)^{\frac{1-\alpha}{\alpha}} > \phi$
 - A threshold value of u_i above which users adopt
Users and Token Demand (con’t)

- Agent i’s optimal holding of tokens is given by

$$k_{i,t}^* = \frac{N_t^\gamma A_t u_i}{P_t} \left(\frac{1 - \alpha}{r - \mu_t^P} \right)^{\frac{1}{\alpha}}.$$

(2)

It has the following properties:

1. $k_{i,t} \uparrow$ in N_t, user base.
2. $k_{i,t} \downarrow$ in token price P_t.
3. $k_{i,t} \uparrow$ in A_t, platform usefulness, and agent-specific u_i.
4. $k_{i,t} \uparrow$ in the expected token price change, μ_t^P.

- Determine N_t: if profits > 0, agents participate

- Adoption: maximized profit $N_t^\gamma A_t u_i \alpha \left(\frac{1 - \alpha}{r - \mu_t^P} \right)^{\frac{1-\alpha}{\alpha}} > \phi$

 - A threshold value of u_i above which users adopt
Token Valuation

- Users’ aggregate transaction need: $U_t := \int_{u \geq u_t} u g(u) \, du$, where u_t is the indifference threshold.

- Token market clearing, $M_t = \int_{i \in [0,1]} k_{i,t}^* \, di$.

- The equilibrium token price is given by

$$P_t = \frac{N_t^{\gamma} U_t A_t}{M_t} \left(\frac{1 - \alpha}{r - \mu_t^P} \right)^{\frac{1}{\alpha}}.$$ \hspace{1cm} (3)

- μ_t^P is the expectation of risk-adjusted token appreciation.
Token Valuation

- **Users' aggregate transaction need:** \(U_t := \int_{u \geq u_t} u g(u) \, du \), where \(u_t \) is the indifference threshold.

- **Token market clearing,**
 \(M_t = \int_{i \in [0,1]} k_{i,t}^* \, di \).

- The equilibrium token price is given by
 \[
P_t = \frac{N_t^\gamma U_t A_t}{M_t} \left(\frac{1 - \alpha}{r - \mu_t^P} \right)^{\frac{1}{\alpha}}.
 \]
 \[\text{(3)} \]

- \(\mu_t^P \) is the expectation of *risk-adjusted* token appreciation.
Token Valuation

• Users' aggregate transaction need: $U_t := \int_{u \geq u_t} u g(u) \, du$, where u_t is the indifference threshold

• Token market clearing,
 $M_t = \int_{i \in [0,1]} k_{i,t} \, di$.

• The equilibrium token price is given by
 $P_t = \frac{N_t^\gamma U_t A_t}{M_t} \left(\frac{1 - \alpha}{r - \mu_t^P} \right)^{\frac{1}{\alpha}}$. \hspace{1cm} (3)

• μ_t^P is the expectation of risk-adjusted token appreciation
Optimal Token Supply

- Two controls: L_t (investment) and D_t (payout/buy-back)
- Two state variables: M_t and A_t

\[
V_t = \max_{\{L_t, D_t\}_{s \geq t}} \int_{s=t}^{+\infty} \mathbb{E}_t \left[e^{-r(s-t)} P_s dD_s \left[I\{dD_s \geq 0\} - (1 + \chi) I\{dD_s < 0\} \right] \right],
\]

- Continuation value: the present value of seigniorage
Calibration

Table 1: Calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Model</th>
<th>Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Key Parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) α</td>
<td>0.3</td>
<td>Comovement: N_t & P_t</td>
<td>Cong, Li, and Wang (2018a)</td>
</tr>
<tr>
<td>(2) μ^H</td>
<td>50%</td>
<td>Productivity growth</td>
<td>Cong, Li, and Wang (2018a)</td>
</tr>
<tr>
<td>(3) σ^H</td>
<td>200%</td>
<td>Productivity volatility</td>
<td>Cong, Li, and Wang (2018a)</td>
</tr>
<tr>
<td>(4) θ</td>
<td>$1e4$</td>
<td>Investment variation</td>
<td>Illustrative purpose</td>
</tr>
<tr>
<td>(5) ξ</td>
<td>2</td>
<td>The Distribution of u_i</td>
<td>Illustrative purpose</td>
</tr>
<tr>
<td>(6) κ</td>
<td>0.8</td>
<td>The Distribution of u_i</td>
<td>Illustrative purpose</td>
</tr>
<tr>
<td>(7) θ</td>
<td>$5e5$</td>
<td>The Distribution of u_i</td>
<td>Comparative Statics – Competition Effects</td>
</tr>
<tr>
<td>(8) χ</td>
<td>20%</td>
<td>Token buyback cost</td>
<td>Comparative Statics – Financial Frictions</td>
</tr>
<tr>
<td>(9) γ</td>
<td>$1/8$</td>
<td>N_t in total productivity</td>
<td>Parameter restriction</td>
</tr>
<tr>
<td>Panel B: Other Parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10) r</td>
<td>5%</td>
<td>Risk-free rate</td>
<td></td>
</tr>
<tr>
<td>(11) ϕ</td>
<td>1</td>
<td>Scaling effect on A_t</td>
<td></td>
</tr>
<tr>
<td>(12) ρ</td>
<td>1</td>
<td>Shock correlation: SDF & A_t</td>
<td></td>
</tr>
<tr>
<td>(13) η</td>
<td>1</td>
<td>Price of risk</td>
<td></td>
</tr>
</tbody>
</table>
Parametric Assumption of u_i Distribution

- u_i follows a Pareto distribution on $[U_t, +\infty)$ with c.d.f.

$$G_t(u) = 1 - \left(\frac{U_t}{u} \right)^\xi,$$

where $\xi \in (1, 1/\gamma)$ and $U_t = 1/(\omega A_t^\kappa)$, $\omega > 0, \kappa \in (0, 1)$.

- The cross-section mean of u_i is $\frac{\xi U_t}{\xi - 1}$

- U_t decreases in A_t: (1) to capture competition effects; (2) for analytical convenience
Endogenous User Base

Proposition

Given μ_t^P, we have a unique non-degenerate solution for N_t under the Pareto distribution of u_i given by Equation (4):

$$N_t = \left(\frac{A_t^{1-\kappa \alpha}}{\omega \phi} \right)^{\frac{\xi}{1-\xi \gamma}} \left(\frac{1 - \alpha}{r - \mu_t^P} \right)^{\frac{\xi}{1-\xi \gamma}} \left(\frac{1-\alpha}{\alpha} \right),$$

if $A_t^{1-\kappa} \left(\frac{1-\alpha}{r - \mu_t^P} \right)^{\frac{1-\alpha}{\alpha}} \leq \frac{\omega \phi}{\alpha}$; otherwise, $N_t = 1$.

- Why hold token? (1) Usage A_t. (2) Investment μ_t^P
Optimal Control

HJB equation:

\[r V (M_t, A_t) \, dt = \max_{L_t, dD_t} V_{M_t} \left[\frac{F (L_t, A_t)}{P_t} \, dt + dD_t \right] + V_{A_t} A_t L_t \mu^H \, dt \]

\[+ \frac{1}{2} V_{A_t} A_t^2 L_t^2 \sigma^2 \, dt + P_t dD_t \left[I \{dD_t \geq 0\} - (1 + \chi) I \{dD_t < 0\} \right], \]

with

\[dM_t = \frac{F (L_t, A_t)}{P_t} \, dt + dD_t, \]

\[\text{and} \quad \frac{dA_t}{A_t} = \left(\mu^L \, dt + \sigma^L dZ_t \right) L_t \]

Proposition

The optimal token supply is given by (1) the optimal choice of \(L_t \),

\[L_t^* = \frac{V_{A_t} \mu^H + V_{M_t} \frac{1}{P_t}}{-V_{M_t} \frac{\theta}{P_t} - V_{A_t} A_t \sigma^2}, \tag{6} \]

and (2) the optimal choice of \(dD_t \) — the platform pays out token dividends \((dD_t^* > 0) \) if \(P_t \geq -V_{M_t} \), and the insiders buy back and burn tokens out of circulation \((dD_t^* < 0) \) if \(-V_{M_t} \geq P_t (1 + \chi) \).
Risk-Neutral to Physical Measure

- SDF: \(\frac{d\Lambda_t}{\Lambda_t} = -rdt - \eta d\hat{Z}_t^\Lambda \)

- Risk-neutral measure: \(dZ_t^\Lambda = d\hat{Z}_t^\Lambda + \eta dt \).

- \(\rho = corr(dZ_t^\Lambda, dZ_t^A) \)

- Calibrate the model to the speed of \(N_t \) growth in data
 - Drift of \(A_t \) under physical measure: \(\mu^A + \eta \rho \sigma^A \)